ORNA

In situ CAR Therapy Using oRNA

MAY 18, 2023

oRNA and LNPs combine to make a broad platform

in situ CARs: Potential to Revolutionize CAR-T Cell Therapy

Standard autologous CAR-T products

- Personalized for each patient
- Complex manufacturing process and logistics
- · Limited payload capacity

- High COGS
- Difficult to redose
- Multiplexing requires complex cell engineering
- Requires lymphodepletion

Orna's vision for in situ CARs

- Truly off-the-shelf product
- Simple infusion of immunotropic oRNA product
- Transient expression
- No lymphodepletion

- Low COGS
- Redosable
- Simple multiplexing through oRNA engineering
- Payload capacity >10kb

Cell engineering

Simple manufacturing

Infused into patient

3

oRNA advantages

Lipid Nanoparticle (LNP) Technology

- LNPs are clinically and commercially validated delivery vehicles for long (coding) and short RNAs
- Classic LNPs have 4 lipid components and a payload
- The most important lipid is the *ionizable lipid*, which determines cell uptake and payload escape from the endosome

Orna's Platform

Production

Expression

Delivery

Production: oRNA Self-Circularizes

Production is by *in vitro* transcription of a linearized plasmid

No modified nucleotides

Co-transcriptional circularization *via* a proprietary, autocatalytic split ribozyme

All circles are full-length

- Only full-length transcripts can reconstitute the ribozyme
- No N-1 molecules

(>)

(>)

Payload capacity over 10 kb, with robust circularization efficiency

 Circular topology allows for robust purification

IRES Impacts Protein Expression and Function in T cells

Lipid synthesis & screening pipeline

Read on d8

Read on d8

LNP ImmunoTropism is Maintained Across Species

In situ CAR (isCAR™) Platform

CAR oRNA design

The oRNA has three components for optimization:

1. IRES

ORNA

- 2. CAR amino acid sequence
- 3. CAR nucleotide sequence
- 1. Natural, full-length IRES sequences from the FoRCE™/IRESome screen
 - Screened & validated in human T cells
- 2. Clinically validated CAR amino acid sequence for POC (FMC63)
 - For anti-CD19 CARs: Yescarta / Kymriah / Breyanzi
- 3. CAR oRNA sequence optimized for CAR functional expression

12

First in vivo POC for isCAR in hematologic malignancies Antigen-dependent tumor regression/elimination

isCAR exhibits dose-responsiveness

- Non-Optimized IRES and oCAR construct and Generation 4 lipid used in this study
- Unstimulated PBMCs used for engraftment
- 4 Doses vs. 5 in previous slide

FoRCE™ platform enables interrogation of the IRESome

- 3000 candidate IRES sequences; several thousand sequence clades
- Impractical to screen manually, especially through circularization and formulation
- FoRCE[™] is an arrayed, automated screening platform to take plasmid DNA through IVT, formulation and cell-based readout

ORNA

Arrayed oRNA can be created, purified, formulated and assayed by the hundreds

Critical capability for IRES screening and oRNA optimization

15

Combining IRES and CO sequences drives higher CAR expression

Constructs Found In IRES and Codon Optimization Screens Outperforms Workhorse CD19 CAR Construct

- These assays represent LNP-X transfected, activated PBMCs in coculture with NALM6 cells
- These data show a lead oRNA construct for ORN-101 (three leads were tested)
- The Old CD19 CAR construct contains our workhorse CK IRES and a non-optimized CAR sequence
- New oCAR constructs combine hits form our IRES and CodOp screens
- These data show that the New oCAR Construct outperforms the Old

In Vivo Humanized NALM6 Tumor Efficacy Model

- NSG or NSG MHC Class I/II KO immunodeficient mice
- Add human immune cells (PBMCs)

ORNA

• In vivo imaging (IVIS) technology allow quantitative in life tumor monitoring

Newly identified IRES/CO constructs significantly improve in vivo potency

• These data repeat across 2 donors for doses as low as 0.3 mg/kg

IRES/CO C shows anti-tumor activity at doses as low as 0.1 mg/kg

NA Multiple Mann-Whitney Test with Holm-Sidak Correction * $P \le 0.05$, ** $P \le 0.01$, *** $P \le 0.001$ NSG mice

do 1e6 NALM6-Luc injection

d4 1e7 huPBMC engraftment

isCAR is efficacious using weekly dosing schedule

1X/Wk: Days 5, 12, 19, 26,33 **Days Post-Nalm6 Engraftment** NSG MHC I/II KO D0 NALM6 D4 huPBMC

Efficacy observed across multiple donors and multiple experiments Dosing can be sustained for at least 5 cycles

Tumor Control Observed with Bi-weekly Dosing

Animals treated with oRN-101 at 0.3 and 0.1 mg/kg show tumor control for up to 56 days

LNP-HER2 treated animals succumb to tumors at By Day 30

 \bigcirc

ORNA

(>)

(>)

Lower and less frequent dosing increases the therapeutic window of the isCAR

Nalm6: Day 0 PBMC: Day 4 IVIS: 2x weekly q2w: Day 5, 19, 33, 47

ELN2583 David S, Ramya E, Akinola E 21

oRNA capacity & IRES diversity empowers multi-targeting

Acknowledgements

