ORNA

Discovery of translation initiation elements enabled by a parallel arrayed screen of fulllength viral UTRs in synthetic circular RNA

R. ALEXANDER WESSELHOEFT CO-FOUNDER, DIRECTOR OF MOLECULAR BIOLOGY ORNA THERAPEUTICS 5/16/22

oRNA™: Synthetic circular RNA with therapeutic potential

- oRNAs are a new class of long coding RNA with advantages over linear mRNA
- No 5' cap or polyA tail required for translation
- Expression is driven by an IRES element
- High translation and stability without nucleoside modifications

The IRES drives translation from oRNA

- The IRES is a large RNA structure that drives translation
- Secondary and tertiary folding are both important for function
- IRES identification and development is critical for optimizing oRNA function, analogous to the identification of new cap structures
- IRES elements can be derived from viral UTRs, of which there are thousands of unique sequences
- Different types of IRESs exist

IRES activity depends on nucleic acid context

Adapted from Gritsenko et al, 2017

Viral/Cytoplasmic IRESs

- Translation dependent on cytoplasmic ITAFs
- Range from ~400-1000+ bases
- · No need for modifications

ORNA

Endogenous/Nuclear IRESs

- Must have nuclear experience for translation
- Shorter sequences (<200 nt)
- Potential for base modifications and/or specific protein association

- IRESs identified using plasmid screens may or may not function in the context of oRNA
- The nuclear environment provides alternative mechanisms for capindependent translation that are not available to cytosolic RNAs

High-activity IRESs are long and complex

 Short oligo-based library approaches can be used to test large numbers of diverse sequences

- There is a correlation between IRES length and translation activity, with the 400-800nt UTR length range showing greatest activity
- Most active IRESs are out of reach of oligobased libraries, and IRESs must be individually synthesized as full-sized 'genes'

IRES translation activity is cell type dependent

- Significant cell type tropism in IRES-mediated protein expression was observed
- A need emerged to characterize IRES elements in relevant contexts

Many challenges await a robust IRES screen

\frown	
	There are thousands of putative IRES sequences we want to test
	We need to test them in the oRNA context, and not plasmid DNA
\sim	
	They're generally long (>500nt) and therefore not amenable to oligo-based libraries
	We need to test them in relevant cell types to really understand their activity
\sim	
	Lipid nanoparticle formulation can impact IRES activity (or vice versa)

FoRCE™ high-throughput screening

Formulated <u>oRNA</u> <u>Cell-based</u> <u>Evaluation</u>

Unlocking a new world of IRES elements

- We identified hundreds of new IRES elements highly active in oRNA
- Some IRESs are 10-40x stronger than the commonly used EMCV-type IRESs
- There can be significant differences even between IRESs from highly similar viruses, showing the importance of empirical approaches

IRESs can have vastly different activities in different cell types

- Myotube and hepatocyte IRES activities often correlate
- T cell IRES activity often does not correlate with activity in myotubes and hepatocytes
- Few IRESs are strong in all cell types

Phylogeny can be used to narrow the search

- UTRs cluster by sequence similarity
- Some clusters contain IRESs that are more active than others and are generally good places to go looking for IRESs
- Within clusters, there is a range of expression activity

Orna has unlocked a new world of cap-independent translation

- RNA context
- Long and complex sequences, 500nt+
- Relevant cell types

ORNA

Nanoparticle delivery

We created FoRCE to enable:

- Automated synthesis of thousands of oRNAs
 - High throughput LNP formulation
- Material assessment in primary cells

Using FoRCE, we:

- Characterized thousands of putative IRESs
- Identified highly active IRESs superior to commonly used IRESs
- Gained an understanding of IRES tissue tropism

